Three-dimensional Solitary Gravity-capillary Water Waves

نویسنده

  • M. D. GROVES
چکیده

The existence of solitary-wave solutions to the three-dimensional water-wave problem with strong surface-tension effects is predicted by the KP-I model equation. The term solitary wave describes any solution which has a pulse-like profile in its direction of propagation, and the KP-I equation admits explicit solutions for three different types of solitary wave. A line solitary wave is spatially homogeneous in the direction transverse to its direction of propagation, while a periodically modulated solitary wave is periodic in the transverse direction. A fully localised solitary wave on the other hand decays to zero in all spatial directions. In this article we outline mathematical results which confirm the existence of all three types of solitary wave for the full gravity-capillary water-wave problem in its usual formulation as a free-boundary problem for the Euler equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transversally periodic solitary gravity-capillary waves.

When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are foun...

متن کامل

Model Equations for Gravity-capillary Waves in Deep Water

The Euler equations for water waves in any depth have been shown to have solitary wave solutions when the effect of surface tension is included. This paper proposes three quadratic model equations for these types of waves in infinite depth with a two-dimensional fluid domain. One model is derived directly from the Euler equations. Two further simpler models are proposed, both having the full gr...

متن کامل

Dynamics of Three-Dimensional Gravity-Capillary Solitary Waves in Deep Water

A model equation for gravity-capillary waves in deep water is proposed. This model is a quadratic approximation of the deep water potential flow equations and has wavepacket-type solitary wave solutions. The model equation supports line solitary waves which are spatially localized in the direction of propagation and constant in the transverse direction, and lump solitary waves which are spatial...

متن کامل

Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem

A model equation derived by B. B. Kadomtsev & V. I. Petviashvili (1970) suggests that the hydrodynamic problem for three-dimensional water waves with strong surface-tension effects admits a fully localised solitary wave which decays to the undisturbed state of the water in every horizontal spatial direction. This prediction is rigorously confirmed for the full water-wave problem in the present ...

متن کامل

Integral and Asymptotic Properties of Solitary Waves in Deep Water

We consider twoand three-dimensional gravity and gravity-capillary solitary water waves in infinite depth. Assuming algebraic decay rates for the free surface and velocity potential, we show that the velocity potential necessarily behaves like a dipole at infinity and obtain a related asymptotic formula for the free surface. We then prove an identity relating the “dipole moment” to the kinetic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004